Vanadate effect on the Na,K-ATPase and the Na-K pump in in vitro-grown rat vascular smooth muscle cells.

نویسندگان

  • B M Searle
  • H Higashino
  • F Khalil
  • J D Bogden
  • A Tokushige
  • H Tamura
  • M Kino
  • A Aviv
چکیده

The impact of vanadate on the Na,K-ATPase system in the vascular smooth muscle cell is poorly understood. The present study describes the kinetics of the effect of vanadate on Na,K-ATPase and the Na-K pump in in vitro grown rat VSMC's. Vanadate interaction with the Na,K-ATPase system in vascular smooth muscle cells was examined by observing its influence on ouabain-sensitive adenosine triphosphate hydrolysis in disrupted cells rendered permeable by osmotic shock, and the uptake of rubidium by intact cells. The I50 for vanadate inhibition of ouabain-sensitive hydrolysis of adenosine triphosphate occurred at vanadate concentrations of 10(-6) to 10(-7) M. This inhibition was potassium dependent. The maximal inhibitory effect of vanadate occurred at potassium concentrations of 10-20 mEq/liter. Sodium exerted a moderate antagonistic influence on vanadate inhibition of ouabain-sensitive adenosine triphosphate hydrolysis. Rubidium uptake by vascular smooth muscle cells was not altered within 120 minutes when 10(-5) M vanadate was added to the medium containing intact vascular smooth muscle cells. Yet, vanadium concentrations in the vascular smooth muscle cells within this incubation period reached levels 1.48-fold higher than the extracellular vanadate concentrations of 10(-5) M. These observations indicate that vanadate is a potent inhibitor of the VSMC Na,K-ATPase in disrupted vascular smooth muscle cells. However, in intact vascular smooth muscle cells vanadium gaining access into the vascular smooth muscle cell's interior does not inhibit the Na-K pump, probably because of its binding to intracellular proteins and/or conversion from the vanadate to the vanadyl ion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cadmium effect on the Na,K-ATPase system in cultured vascular smooth muscle cells.

The present study focuses on the interaction between cadmium (Cd) and the Na, K-ATPase system in in vitro grown vascular smooth muscle cells (VSMCs) derived from the rat carotid artery. In disrupted VSMCs rendered permeable by osmotic shock, Cd inhibited Na, K-ATPase; I50 was reached at 10(-5) M Cd. Mg-ATPase was also inhibited by Cd; I50 was attained at concentrations of 10(-4) M Cd. Cd inhibi...

متن کامل

Aortic responses to vanadate: independence from (Na,K)-ATPase and comparison of Dahl salt-sensitive and salt-resistant rats.

Vanadate at doses from 10(-4.5) to 10(-3) M caused a dose-dependent contraction of the rat aorta in vitro. Aortas of Dahl salt-hypertension sensitive (S) rats responded to vanadate with a greater contraction than Dahl salt-hypertension resistant (R) rats. In contrast, S and R aortic responses to depolarization with potassium were equal, and responses to norepinephrine were less in S than R. The...

متن کامل

O-10: A Marked Animal-Vegetal Polarity in The Localization of Na+,K+-ATPase Activity and Its Down-Regulation Following Progesterone-Induced Maturation

Background: Polarized cells are key to the process of differentiation. Xenopus oocyte is a polarized cell that has complete blue-print to differentiate 3 germ layers following fertilization, as key determinant molecules (Proteins and RNAs) are asymmetrically localized. The objective of this work was to localize Na+, K+-ATPase activity along animal-vegetal axis of polarized Xenopus oocyte and fo...

متن کامل

بررسی سلولی‌ تومور و مکان‌یابی آنزیم Na+, K+-ATPase در موش توموری شده (Balb/c nu) با استفاده از رده سلولی 4T1

Background and purpose: The 4T1 cell line is a laboratory model used in the study of tumors biology. This cell line is very tumorigenic with high metastatic capacity in different organs. In this study, histology and immunohistochemistry methods were used to investigate the structure and localization of Na+/K+- ATPase enzyme in 4T1 cells induced breast cancer tumor in Balb/c nu mice. Material...

متن کامل

Effect of atrial natriuretic factor on Na+-K+-Cl- cotransport of vascular smooth muscle cells.

We previously demonstrated that vascular smooth muscle cells possess a prominent Na+-K+-Cl- cotransport system that can be markedly stimulated by elevations in levels of intracellular cyclic guanosine 3',5'-monophosphate (cGMP). Since others have shown that atrial natriuretic factor (ANF) can bind to specific membrane receptors and can enhance cGMP levels in vascular smooth muscle cells, we ask...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation research

دوره 53 2  شماره 

صفحات  -

تاریخ انتشار 1983